Геометрия традиционно занимает важное место в среднем образовании. В зависимости от многих как внешних (общеполитические установки, требования экономического развития), так и внутренних (развитие методико-математической и педагогической мысли) факторов, содержание курса геометрии, его цели, способы преподавания существенно менялись. В процессе становления и развития отечественных традиций математического образования педагогами прошлого были найдены классические методические решения, которые позволили математическому образованию в средних образовательных учреждениях подняться на большую высоту. Так, ”Элементарная геометрия” А.П. Киселева, созданная еще во второй половине XIX века, благодаря своей доступности и логической стройности и сегодня продолжает входить в золотой фонд наших учебников. Возрождая лучшие традиции отечественного гимназического образования, обратимся к истокам — к истории преподавания геометрии в средних учебных заведениях прошлых веков. Ведь именно на основе анализа развития методики геометрии в прошлом мы можем получить сегодня новые плодотворные идеи для современной школы. Итак, каким же было преподавание геометрии в XIX веке?
Геометрия вместе с алгеброй, плоской тригонометрией, прикладной математикой и опытной физикой входила в курс математики гимназии начала XIX века. На все математические дисциплины отводилось всего 18 часов в неделю суммарно во всех классах. Для сравнения: сегодня на математику отводится 46 часов. В то же время объем знаний, которые нужно было сообщить учащимся, не соответствовал такому малому количеству часов.
В это время геометрию часто не выделяли в качестве отдельно изучаемого предмета, существовал единый курс математики, например, “Курс математики” Т.Ф. Осиповского. Курс был очень обширным. В него входили такие вопросы, как:
Ø свойства уравнений высших степеней,
Ø разрешимость уравнений, имеющих рациональные корни,
Ø неопределенные уравнения второй и высших степеней,
Ø планиметрия,
Ø стереометрия,
Ø прямолинейная геометрия,
Ø элементы аналитической геометрии.
Учащиеся не справлялись с таким большим объемом материала, и часто учение сводилось к зубрежке целых учебников.
В 1837 году вышел “Гимназический курс чистой математики” Д.М. Перевощикова - учебник, который содержал элементы аналитической геометрии и также был достаточно перегружен информационно.
Такая информационная перегруженность зачастую объяснялась тем, что учащимся нужно получить в гимназиях все сведения, которые понадобятся им в жизни. Таким образом, главной целью математического образования была практическая, т. е. — дать учащимся широкий перечень математических знаний и умений, которые затем пригодятся на практике. Эта цель математического образования была более характерна для XVIII века, когда обучение математике рассматривалось в основном в контексте будущей профессии. Но, как видим, практическая цель обучения математике оставалась главной и в начале XIX века. Практическая цель обучения четко прослеживается в учебных руководствах геометрии того времени. Например, в “Кратком руководстве к геометрии” теоремы были представлены как задачи с решениями. Задач для самостоятельного решения — задач без решений — не было. При этом даже предлагаемые решения задач часто содержали просто алгоритм необходимых вычислений, а не объяснения и доказательства. Например, задача XXVI “Найти толстоту призмы” решалась так: ”Помножь основание высотою (а не осью в косых призмах). Сие произведение в кубической мере есть толстота призмы”. Предполагалось, видимо, что учащиеся будут заучивать решения задач и по мере надобности использовать алгоритмы решения в повседневной жизни.
Наряду с практической целью изучения геометрии, в первой половине XIX века важное значение имело и умственное (формально-логическое) развитие учащихся, при этом главная роль в формально-логическом развитии отводилась теории. Приписывая теории большое образовательное значение, тогда считали, что учащиеся должны сознательно овладеть ею и учиться на лучших логических образцах построения теории. Одним из примеров такого подхода является известный учебник “Основания геометрии” выдающегося математика С.Е. Гурьева. Вот, например, определения из книги С.Е. Гурьева:
“Круг есть предел правильных многоугольников, вписываемых в нем или описываемых около него через удвоение числа сторон их”
”Когда две точки одной линии, лежа на двух точках другой, делают, что и самые линии лежат одна на другой; то каждая из оных называется прямою”
Наряду с С.Е. Гурьевым разработкой курсов геометрии для средней школы занимались и другие выдающиеся ученые-математики с мировой известностью — В.Я. Буняковский, М.В. Остроградский, Н.И. Лобачевский. Подчеркивая оригинальность, высочайшую научную ценность данных курсов, их логическую красоту и строгость, необходимо отметить, что эти курсы были, как и учебник С.Е. Гурьева, очень сложны для учащихся средних учебных заведений.
Педагогические заметки:
Влияние музыки человека: психологические и
физиологические факторы
Все древнейшие учения земных цивилизаций содержат в себе и опыт воздействия музыки на животных, растения и человека, накопленный тысячелетиями. В древности выделяли 3 направления её влияния на человека: 1) на духовную сущность; 2) на интеллект; 3) на физическое тело. Эти известные с древности напра ...
Я в мире профессии тренинги профессионального самоопределения для
подростков
В МОУ для детей МУК, помимо анкетирования активно проводятся тренинги призванные обеспечить самореализацию учащихся в выборе профессии. В данном разделе квалификационной работы мной будет предложена программа «Тренинги профессионального определения». Выбор профессии наиболее важное решение, которое ...
Особенности профессиональной подготовки дизайнеров
Для творческой деятельности дизайнеру необходимо располагать сведениями из многих областей знания, которые нередко далеко стоят друг от друга. Для получения положительного результата в профессиональной деятельности дизайнер должен синтезировать знания, принадлежащие как к сфере искусства, так и ко ...