Векторные диаграммы импульсов в задачах о столкновениях частиц

Информация о педагогике » Векторные многоугольники в физических задачах » Векторные диаграммы импульсов в задачах о столкновениях частиц

Страница 2

. (2.4 6)

Легко установить связь между углами вылета в JI-системе и в Ц-системе:

, (2.4 7)

причем если при каждому значению соответствует одно значение , то при каждому значению соответствует два значения (за исключением случая ).

Перейдем к изучению столкновений частиц. Задача о неупругом столкновении двух частиц обратна задаче о распаде частицы на две, рассмотренной выше. В Ц-системе справедливо выражение (2.4 1), а величина в этом случае равна приращению внутренней энергии составной частицы, образовавшейся в результате неупругого столкновения.

Рассмотрим задачу об упругом столкновении двух частиц, при котором не изменяется их внутреннее состояние. Как известно, в JI-системе скорость центра масс двух частиц с массами и скоростями и определяется выражением:

. (2.4 8)

Скорости частиц до столкновения в Ц-системе связаны с их скоростями в JI-системе известными соотношениями

, , (2.4 9)

где . В силу закона сохранения импульса импульсы обеих частиц в Ц-системе остаются после столкновения равными по модулю и направленными в противоположные стороны, в силу закона сохранения энергии модули импульсов в Ц - системе при столкновении не меняются. Таким образом, в Ц-системе результат столкновения сводится лишь к повороту скоростей обеих частиц, причем после поворота скорости остаются направленными в противоположные стороны. Если единичный вектор выражает направление скорости первой частицы после столкновения, то в Ц-системе.

,. (2.4 10)

Чтобы вернуться к JI-системе, нужно к этим выражениям добавить скорость центра масс:

(2.4 11)

Этим исчерпываются сведения, которые можно получить из одних только законов сохранения импульса и энергии. Направление вектора зависит от условий взаимодействия частиц (от взаимного расположения во время столкновения и т.п.).

Для геометрической интерпретации результатов перейдем опять к импульсам. Из (2.4 11) получим:

(2.4 12)

где - приведенная масса частицы. Векторная диаграмма импульсов, соответствующая (2.4 12), приведена на рисунке 9. Здесь

,,.

Страницы: 1 2 3 4

Педагогические заметки:

Понятие «качество образования», основные критерии оценки и технологии повышения качества ее
Образование - по законодательству РФ - целенаправленный процесс воспитания и обучения в интересах человека, общества, государства, сопровождающийся констатацией достижения обучающимся гражданином установленных государством образовательных уровней (образовательных цензов). Уровень общего и специальн ...

Модель нового мышления формирования навыков
Для того, чтобы каждый учащийся обрел свободу мышления и свой «голос» важно опираться в обучении по отношению к учащемуся на парадигму целого человека имеющего не только тело и разум (парадигма человека как существа), но и сердце и дух, нужно удовлетворить четыре потребности учащегося, как целого ч ...

Проблемы профессионального самоопределения молодежи в современных условиях
Такая ситуация актуализирует востребованность в нашем обществе различных форм профориентационной работы. Обозначенное направление работы стало активно развиваться у нас со второй половины восьмидесятых годов прошлого века, когда в крупных городах России были открыты центры профориентации молодежи, ...

Категории

Copyright © 2025 - All Rights Reserved - www.faireducation.ru